

SYSTEM

Load Management System

Owner's Manual

Table of Contents

Owner's Manual	
ORIGINAL PURCHASER	1
SALES, INSTALLATION, AND EQUIPMENT	1
INSTALLATION NOTES	1
MANUFACTURER	
INTRODUCTION	
COMPONENTS	
Relay Enclosure	
Control Module	
USER MODES	
Mode 1 Demand Limit	
How to Change Demand Limit Setting	
Mode 2 Current Demand	
Mode 3 Last Period Average	
Mode 4 Peak Period Average	
How to Erase Peak Period Average	
Mode 5 Circuit Override	
How to Override the Normal Operation of a Circuit	
How to Display (Shed/Restore) Status of Each Circuit	5
Mode 5. (5 dot) Time of Override	
How to set Override Time	5
Mode 6 Auto Adjust On/Off and Maximum Limit	5
How to Change Auto Adjust Maximum Limit	
Mode 6. (6 dot) Auto Adjust Low Limit	
How to Change Auto Adjust Low Limit	
Mode 7 Alarm Control	
How to Change Alarm Sound or Turn Off	6
SERVICE QUESTIONS	6
What if my display has an error message?	
How do I turn off my System 1000?	
What if an appliance does not work?	 A
what it art appliance does not work?	
Installation Settings & Controls	8
SYSTEM 1000 INSTALLATION WORKSHEET	Ω
SETUP MODE DEFINITIONS	ع
Definition of Mode P1 through P8	9
Definition of Mode L1 through L8	9
Definition of Mode E1 through E8	9
Definition of Mode d1 through d8	10
Definition of Mode F1 through F3	10
Definition of Mode 11 to 1.8	10
Definition of Mode 21 to 2.8	10
Twenty-four Hour Timers	10
Definition of Mode PL	11
Definition of Mode dA	11
Definition of Control Flags Mode C.1 through C.8	11
Definition of Mode r.1 through r.8	12
Definition of Mode =1 through =6	12
How to set Current Time	12
Definition of Mode rA	12
Definition of Mode 3.1 to 3.8	13
Definition of Mode U.1 to U.8	13
Definition of Mode UC	13
TEST MODE DEFINITION	13
TEST IVIOUE DEFINITION	

Hardware Installation Manual	
PREFACE	
MOUNTING RELAY ENCLOSURE & CONDUIT	14
CONNECTION OF CURRENT TRANSFORMERS & RESISTORS	15
CONNECTION OF HIGH VOLTAGE (CLASS 1) CIRCUITS	
Water Heater Connection	
Clothes Dryer Connection	16
Resistive Heating Connections	17
Spa Heater Connection	17
Pool Equipment	17
CONNECTION OF LOW VOLTAGE (CLASS 2) CIRCUITS	17
Heating Ventilation and Air Conditioning Systems	12
Interrupting 24 VAC to Shed Entire H.V.A.C.	10
Interrupting only the Compressor to Shed H.V.A.C.	10
Interrupting 24 VAC to Shed H.V.A.C. with Pilot Relay	10
Interrupting Fan, Heat and Cool to Shed H.V.A.C. with 3PDT	
Harvest Aire Thermostat Optimizer	
CONNECTION OF OPTIONAL CONTROLS	19
Utility Shed	
Utility Peak	20
FINAL INSPECTION AND DOCUMENTATION	
SERVICE	21
Annon die A. Ones and an Tourste at Anathana a	
Appendix A Connector Terminal Assignments	22
CARD-EDGE CONNECTOR TERMINALS	
SYSTEM 1000 TERMINALS	22
Appendix B Setup Parameters in Step-by-step Order	23
A !! 00 / T !	
Appendix C Setup Examples	
Appendix D Typical Current Transformer Installations	
Single Phase 200 Ampere	27
Single Phase 400 Ampere (4 CT's)	27
Single Phase 400 Ampere (2 CT's)	27
Single Phase + wild leg (208)	28
Three Phase (true)	28
Appendix E Relay Expansion Cards	29
Appendix F New User Modes	30
Appendix G Error Codes	32
- bb	V
Technical Specifications	22
TYPICAL RELAY ENCLOSURES	ააა
	4.4
Model 3131	
	33
Model 3132	33 33
CURRENT TRANSFORMERS	33 33

Copyright 1987, 1989, ElectroSem, LLC Revision 1.3

		Owner's Mai	nua
ORIGINAL PURCHASER			
Name:			
Address:			
City:	State:	Zip:	
SALES, INSTALLATION, AND EQUIP	MENT		
Sold By:	Organization:		
	Phone#:		
Installed By:	Organization:		
	Phone#:		
Date Installed:	Serial Number:		
	Model Number:		
INSTALLATION NOTES	· · · · · · · · · · · · · · · · · · ·		
			
MANUFACTURER			

ElectroSem, LLC 2600 South Hardy Drive Tempe, AZ 85282-1916 Telephone: 602-955-6566

INTRODUCTION

Congratulations on your purchase of a Pensar energy management system. The name Pensar represents quality and superior technical achievements. Please take the time to carefully read this manual before attempting to make any changes in operation. Keep it handy for future reference.

The SYSTEM 1000 is an advanced microcomputer load control system that can help substantially save on your utility bills. It does so by monitoring your total electric consumption and controlling high energy usage appliances in order to limit your "peak demand".

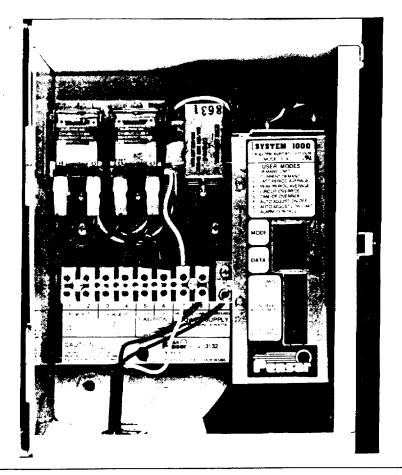
DEMAND is the amount of power needed to operate all the appliances you have on at one time. PEAK DEMAND is the highest demand for electricity, averaged over a given period of time (7.5, 15, 30 or 60 minutes), that you require during a billing month. Your SYSTEM 1000 has been programmed by your installer to coincide with the averaging period used by your utility.

When the SYSTEM 1000 senses that your kilowatt demand limit may be exceeded, it automatically "sheds" (turns off) selected electrical devices, one at a time, in an order (priority) that you have selected. As the demand lessens, each device is restored at the earliest possible moment, usually within six to ten minutes.

High peak demand is a concern to utilities because they must always have enough energy available to service all of their customers at any given time. The higher the total peak demand, the more costly it is to the utility, and ultimately to you the consumer. In order to encourage customers to lower their peak demand, many utilities have created demand rates which reward you with lower energy bills.

With the help of a Pensar energy management system, thousands of utility customers have been able to reduce their peak demand and take full advantage of the savings potential of these demand rates. Your wise investment in a SYSTEM 1000 makes it possible for you to enjoy these savings, starting today and for many years to come.

COMPONENTS


Relay Enclosure

The relay enclosure contains the switching devices used to control the loads (circuits and appliances). It is usually located next to the circuit breaker panel.

To Turn Off the SYSTEM 1000 simply turn off the circuit breaker labeled "Load Controller" located inside the breaker panel.

Control Module

The control module located in the right hand side of the relay enclosure gives all the controls and information you need to operate your SYSTEM 1000. References made below to the control module display windows or switches are in *italic*.

The Mode display indicates which data is currently in the Data display area. The definition of each mode is given on the control module label. The switch labeled Mode Select is used to scan through the display modes. Increase Adjustment and Decrease Adjustment switches are used to change the displayed data.

USER MODES

These modes are provided to allow access to all controls necessary to effectively operate your SYSTEM 1000.

To decrease the power consumption and increase the life of your system, the displays will blank if no switches have been pressed for at least 15 minutes. Pressing any switch will reactivate the display.

As a measure to prevent unauthorized or inadvertent change of control data, data can be locked or unlocked. To unlock (allowing change of data), simultaneously press *Increase Adjustment* and *Decrease Adjustment* switches until a beep is sounded. Data is automatically locked if no switches are pressed for more than two minutes.

MODE 1 Demand Limit:

This mode displays the highest point the SYSTEM 1000 will allow your demand to rise in kilowatts. You may adjust this limit or set the computer to adjust automatically. See Mode 6.

The demand limit is adjustable in tenths of kilowatt hours when set under ten kilowatts and in increments of a half kilowatt when over ten. If the limit is ten or more and the decimal point is lit, add a half kilowatt to the displayed value.

It may take some trail and error to determine the setting that best suits your needs, and maximizes your savings. There are several variables affecting your choice of demand limit, such as location, climate, home size and life style. We recommend consulting your local dealer or installer for advice on adjusting your peak limit.

IMPORTANT NOTE: The demand limit displayed in mode 1 may be manually or automatically adjusted below the maximum setting made in mode 6, but **can not** exceed this limit.

How To Change Demand Limit Setting:

- 1. If display is blank press any switch.
- 2. If not already in mode 1, press Mode Select until "1" is displayed in the Mode window.
- 3. If data is locked, unlock data by pressing both the *Increase Adjustment* and *Decrease Adjustment* switches until a beep is sounded.
- 4. Raise or lower kilowatt setting in the Data window using either Increase Adjustment or Decrease Adjustment. If data does not change see important note above.
- 5. Your displayed selection is valid. You may press Mode Select to change display mode as desired.

Mode 2 Current Demand:

The rate at which you are currently using power is displayed. When loads are turned on and off, the display will change within 15 seconds to show the change in your rate of power consumption.

NOTE: Because the SYSTEM 1000 is an averaging controller, you will, at times, see the current demand go above the demand limit. However, the average value displayed in this mode, over the entire averaging period, will be less than or equal to the demand limit.

Mode 3 Last Period Average:

The power consumption of the past averaging period is displayed. Knowing how much energy was used during the last period can be valuable in determining if there is enough energy available to run additional appliances.

Mode 4 Peak Period Average:

The highest period demand is retained in memory for your convenience. The amount shown will approximate the kilowatt demand that you'll be billed by the power company. To keep this reading current, erase once a month just after your meter has been read.

How To Erase Peak Period Average:

- 1. If display is blank press any switch.
- 2. If not already in mode 4, press Mode Select until "4" is displayed in the Mode window.
- 3. Press both the Increase Adjustment and Decrease Adjustment switches until the Data display is zeroed.

Mode 5 Circuit Override:

This mode allows you to temporarily change the priority of one or more loads for a period of up to 99 hours. This will prove quite helpful if you need to use an appliance (such as an air conditioner) which is currently being shed, or if you desire to disable a circuit which may use power you desire for other circuits. For instance, you may wish to disable a water heater before a warm wash cycle to reserve energy for your cloths dryer.

When a load is selected for override "E", it is given the highest priority. When a load is selected for override "d", power to the circuit will be disabled. After the selected period of time, the load will automatically revert back to its original priority (unless you remain in mode 5 or 5 dot).

How To Override The Normal Operation Of A Circuit:

- 1. If display is blank press any switch.
- 2. If not already in mode 5, press Mode Select until "5" is displayed in the Mode window.
- 3. If data is locked, unlock data by pressing both the *Increase Adjustment* and *Decrease Adjustment* switches until a beep is sounded.
- 4. Select the circuit you wish to override by pressing the increase switch until its number appears in the Data window.
- 5. Select "E" for Enable, "d" for disable, or "_" for Normal operation by pressing *Decrease Adjustment* until your selection appears in the *Data* window.
- 6. To override more than one circuit simply repeat steps 4 and 5.
- 7. Your displayed selections are valid. If you desire to set a time limit for the override, press *Mode Select* to display mode 5 dot. Otherwise, your selections remain valid until a mode other than 5 or 5 dot is selected.

NOTE: The circuit override WILL NOT allow a load to operate when the last period average exceeds the demand limit. If this should occur, the load in override will be the first allowed to operate once the average is again below the demand limit.

This mode also allows you to display the status of each circuit as outlined below.

System 1000 Owner's Manual Page 4

How To Display (Shed/Restore) Status of Each Circuit:

- 1. If display is blank press any switch.
- If not already in mode 5, press Mode Select until "5" is displayed in the Mode window.
- 3. If data is locked, unlock data by pressing both the *Increase Adjustment* and *Decrease Adjustment* switches until a beep is sounded.
- 4. Select the circuit you wish to check by pressing *Increase Adjustment* until its number appears in the data window.
- 5. If the dot (decimal point) is lit, the load is shed or disabled, otherwise the load is restored to normal operation.

Mode 5. (5 dot) Time Of Override:

If a load is currently in override this mode will reflect how much time remains, otherwise this mode will be skipped. However, any override selections made remain valid until this mode is exited regardless of the timer.

.How To Set Override Time:

- 1. If display is blank press any switch.
- 2. If data is locked, unlock data by pressing both the *Increase Adjustment* and *Decrease Adjustment* switches until a beep is sounded.
- 3. Raise or lower setting in the *Data* window using either *Increase Adjustment* or *Decrease Adjustment*. Time is represented in hours and tenths of hours. "4.5" means four and one-half hours and "0.1" means one tenth of an hour or six minutes.
- 4. Your displayed selection is valid. You may press Mode Select to change display mode as desired.

Mode 6 Auto Adjust On/Off and Maximum Limit:

Auto Adjust is designed to provide maximum savings with minimum attention. However, some people may realize more savings in manual. To select manual control, simply set the maximum to "0.0". Otherwise, the computer will automatically adjust your demand limit (see mode 1), but will never exceed the maximum you selected in this mode. If a maximum limit is set (selection other than "0.0"), attempts to manually exceed it using mode 1 will fail.

How To Change Auto Adjust Maximum Limit:

- If display is blank press any switch.
- 2. If not already in mode 6, press Mode Select until "6" is displayed in the Mode window.
- If data is locked, unlock data by pressing both the increase and decrease switches until a beep is sounded.
- 4. Raise or lower setting in Data window using either Increase Adjustment or Decrease Adjustment.
- 5. Your displayed selection is valid. You may press *Mode Select* to change display mode as desired.

Mode 6. (6 dot) Auto Adjust Low Limit:

The computer may be set to automatically or manually adjust the demand limit (see mode 6). The demand limit (see mode 1) will not adjust below the minimum you have selected in this mode.

Page 5 Owner's Manual System 1000

How To Change Auto Adjust Low Limit:

- 1. If display is blank press any switch.
- If not already in mode 6 dot, press Mode Select until "6." is displayed in the Mode window.
- 3. If data is locked, unlock data by pressing both the *Increase Adjustment* and *Decrease Adjustment* switches until a beep is sounded.
- 4. Raise or lower setting in Data window using either Increase Adjustment or Decrease Adjustment.
- 5. Your displayed selection is valid. You may press Mode Select to change display mode as desired.

Mode 7 Alarm Control:

When the SYSTEM 1000 has shed all loads, and the last period average is rising above the demand limit, an alarm will be sounded. Mode 7 has nine settings ranging from 0 through 8. Selecting "0" will disable the alarm. 1-8 represent different alarm sound levels and tones, 1 being the highest and 8 the lowest pitch. The alarm will only be activated by an uncontrolled load such as an oven or range. To prevent the demand limit from being exceeded you should turn the uncontrolled load off for a few minutes. If the alarm condition occurs frequently, your demand limit is probably too low.

How To Change Alarm Sound Or Turn Off:

- 1. If display is blank press any switch.
- 2. If not already in mode 7, press Mode Select until "7" is displayed in the Mode window.
- 3. If data is locked, unlock data by pressing both the *Increase Adjustment* and *Decrease Adjustment* switches until a beep is sounded.
- 4. Raise or lower setting in *Data* window using either *Increase Adjustment* or *Decrease Adjustment*. The alarm is sounded for up to 15 seconds.
- 5. Your displayed selection is valid. You may press *Mode Select* to change display mode as desired.

SERVICE QUESTIONS

What if my display has an error message?

The SYSTEM 1000 has several self check features. If your display should read "Err#", record the number and report it to your service organization. The demand limit and installation setup may have been altered by the failure.

How do I turn off my System 1000?

You may turn off the SYSTEM 1000 at the circuit breaker panel. One of the breakers should be labeled for the load controller. All circuits connected should be restored to normal operation.

What if an appliance does not work?

If one of the appliances controlled by the SYSTEM 1000 is not functioning properly first check the load status (see mode 5 How to Display Status of Each Circuit). The appliance assigned to each circuit should be noted in either the SYSTEM 1000 INSTALLATION WORKSHEET or in the INSTALLATION NOTES (see index).

System 1000 Owner's Manual Page 6

If the load is shed (decimal point is lit):

- 1) Insure your demand limit (see mode 1) is not set too low to allow the appliance to run See mode 2 and mode 3).
- 2) Insure the override selections (mode 5) do not include the disable of the involved load.
- Insure proper setup (you will probably need to call your installer for help).

If the load is restored (decimal point is dark):

You may locate the source of a problem by turning off the SYSTEM 1000 at the circuit breaker panel. One of the breakers should be labeled for the load controller. All circuits connected will be restored to normal operation. **Watch your demand.**

If the Problem Persists: The appliance involved might be malfunctioning and the appropriate serviceman should be notified. Insure the serviceman knows a load controller is connected.

If the Problem Ends: The SYSTEM 1000 might be malfunctioning and your installer should be notified.

Page 7 Owner's Manual System 1000

Installation Settings & Controls

CAUTION: Use of the installation setup and test modes by an unqualified person could cause damage or improper operation of both controlled equipment and the SYSTEM 1000. The setup modes are not intended for user modification. All the information and control necessary to operate the SYSTEM 1000 has been provided in the user modes. Unauthorized use is at the users own risk.

accepts no liability for damages that may occur due to improper setup or use.

The setup mode is entered by simultaneously pressing the *Increase Adjustment*, *Decrease Adjustment*, and *Mode Select* switches for several seconds (until an alarm sounds). Once the mode is increased past the last mode, user mode "1" is selected. Simultaneously pressing all three switches will, at any point in the programming procedure, restart the set-up mode. Pressing *Mode Select* and *Increase Adjustment* displays the next setup group. Pressing *Mode Select* and *Decrease Adjustment* scrolls back one display mode.

- 1) If you are familiar with the setup control parameters, fill out the installation worksheet. Otherwise, the section following the installation worksheet contains definitions. Appendix B contains a listing of all setup modes in the order they are entered. Appendix C contains example setups.
- 2) Enter the setup mode by simultaneously pressing *Increase Adjustment*, *Decrease Adjustment*, and *Mode Select* switches for several seconds (until an alarm sounds).
- 3) The worksheet may now be used as a guide for setup. Use the *Increase Adjustment* and *Decrease Adjustment* switches to enter the desired data. Once the data is entered, use the *Mode Select* to display the next setup mode.
- 4) When using timer #1 to control demand limiting times, set timer #1 start time to the beginning of the "off peak" period. Set timer #1 stop time to the beginning of the "peak" (demand limiting) period. Insure the control flag "C.3" is set to "_" to enable timer control. NOTE: It is good practice to re-enter the setup mode and review each setup.

	LOAD SELECT FOR UTILITY (EXTERNAL) CONTACT SHED											
SYSTEM 1000 INSTALLATION	RESTORATION DELAY											
WORKSHEET	LOAD SELECT FOR TIMER #2 CONTRO											
Indicate the estimate will also a number of	LOAD SELECT FOR TIMER #1 CONTRO)L										
Indicate the setup by placing a number, or "E" for enabled, or " " for normal in each												
column.		ENABLE TIME (MINIMUM ON MINUTES)										
Timer 1: On Hr. & Min. 11 12	LOAD KILOWATT HOUR DRAW											
Off Hr. & Min. 13 14 Timer 2: On Hr. 21 Off Hr. 22	PRIORITY											
On Hr. 23 Off Hr. 24	# LOAD NAME AND LOCATION		٠. ا									
Control Flags: Utility Shed Contact C1	1)											
Utility Shed On Open C2 Utility Peak Contact C3	2)											
Utility Peak On Open C4	3)											
User Demand Override C5 S.R.P. peak timing C6	4)											
Daylight Savings change C7 Weekends Off Peak C8	5)											
Full Scale Demand Kilowatts	6)											
F1 F2 F3 Demand Period Length (minutes) PL	7)											
Limit Multiplier (0.0 TO 9.9) dA	8)	_	†									
Insure modes = 1 to = 6 reflect current time Utility Shed Max. Time (0.0 - 9.9 hour)				ل		t						
UC												

SETUP MODE DEFINITIONS

Definition of Mode P1 through P8

PRIORITY is used to specify which loads to shed or restore first or which loads to time share with equal priority (rotate). In addition to the normal function of priority, loads may have operation tied to another load (special priority) or to specify loads which are not connected.

NORMAL PRIORITY is selected by settings of 1 through 8. Priority 1 allows the greatest amount of operation time. Priority 8 allows the least operation time.

SPECIAL PRIORITY is selected with settings of 9 through 11. These selections tie operation to the next lowest numbered load (or relay) of normal priority. The effective priority number for a load with special priority is one half more than the load to which it is tied. Special priority loads will not be restored unless the load to which they are tied is restored. Special priority loads may not be directly overrided but override of the normal priority load to which it is tied effectively overrides all special priority loads tied to it.

PRIORITY 9 (for equipment such as pool sweeps) insures 5 minutes expire after restoration of the normal priority load before the special priority load may be restored.

PRIORITY 10 (for a second stage of a thermostat or heat strips without 90 second time delays) insures the normal priority load is restored first.

PRIORITY 11 is designed for heat strips with 90 second delay from call to shed to actual shed, is similar to priority 10 but has additional headroom (energy reserve) to accommodate the delay to actual shed. Restoration delay (see mode r.1) may also be required for control of heat strips with delays to activation.

PRIORITY 12 through 14 should be reserved for future expansion but currently select no connection.

PRIORITY 15 is used to select no connection. These loads are always restored saving power & response time.

Definition of Mode L1 through L8

LOAD KILOWATT DRAW is the kilowatt hours which would be used if the load operated for an hour without interruption (see user mode 2). Set the draw to the next highest whole kilowatt. The load draw in conjunction with the minimum enable time determines if it is possible to restore the load without exceeding the limit.

Definition of Mode E1 through E8

ENABLE TIME is the minimum minutes the load is desired to operate if restored. The enable time should seldom exceed 6 except for loads with low kilowatt demand. Very short times for resistive loads smooth control but may cause excessive relay wear. Set time to balance load efficiency, relay life, & smoothness of control.

Definition of Mode d1 through d8

DISABLE TIME is the minimum minutes the load is desired to remain shed. CAUTION: Disable time is critical to bleed pressure from H.V.A.C. compressor systems before motor start. Most manufacturers recommend 6 minutes. Some H.V.A.C. units have internal time delays for this purpose. Consult equipment specifications to insure proper settings.

Definition of Mode F1 to F3

FULL SCALE READING for each current transformer analog input is provided to scale the inputs to the current transformer, terminating resistance and line voltage parameters. See the section on current transformers and terminating resistance.

Definition of Mode 11 to 1.8

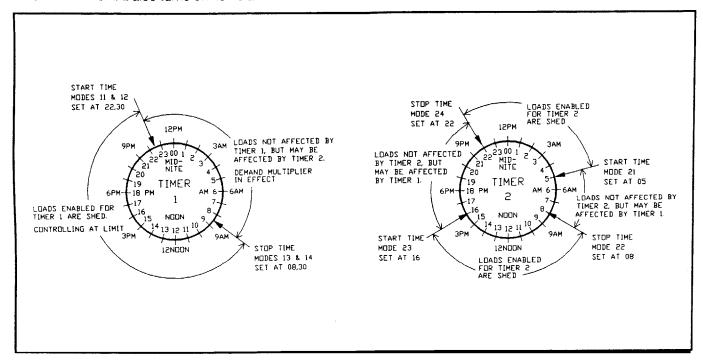
TIMER #1 may be used to schedule on and off peak times (see limit multiplier mode dA) provided the utility contact for that purpose is disabled (see control flags mode C.3 & C.4). Further, any combination of loads may be selected for control by timer 1. Loads which are under timer 1 control are normally shed except between timer 1 start and stop times. However, timer 2 may be set to provide additional enable time.

MODE									DEFINITION				
11											Start Hour (24 hour)		
12											Start Minute		
13											Stop Hour (24 hour)		
14											Stop Minute		
1.1											Load #1 Select ("E" set)		
1.8											Load #8 Select ("E" set)		

Definition of Mode 21 to 2.8

TIMER #2 may be set to control any combination of loads. Loads which are under timer 2 control are normally shed except between the two sets of start and stop hours. However, timer 1 may be set to provide additional enable time.

MOE	DE						DEFINITION
21							Start Hour (24 hour)
22							Stop Hour (24 hour)
23							Start Hour (24 hour)
24							Stop Hour (24 hour)
2.1							Load #1 Select ("E" set)
							•
•							•
							•
2.8							Load #8 Select ("E" set)


Twenty-four Hour Timers

When a load is selected ("E" set) for a timer, and the current time is between the start and stop times for that timer, the load will be enabled.

When a load is selected ("E" set) on both timers, and the current time is between any start and stop times, the load will be enabled.

When a load is not selected ("E" not set) on a timer, the load is not effected by that timer.

Below is an example of timers 1 and 2. Timer #1 is setup for time of day peak control. Timer #1 is set to turn on the demand multiplier at 10:30 P.M. and off at 8:30 A.M.. Timer #2 is set to turn on items at 5 A.M. then back off at 8 A.M.. Timer #2 also turns on items at 4 P.M. then back off at 10 P.M..

Definition of Mode PL

PERIOD LENGTH is provided to select the demand period length used by the utility for billing. Capacity charge is based on the maximum demand in the period during the billing month. Selections are 7.5,15, 30, and 60 minutes.

Definition of Mode dA

LIMIT MULTIPLIER is used to modify the demand limit set in user mode 1. The limit multiplier is controlled by an external contact. See following section modes C.3 & C.4. When in the USER MODES and the Limit Multiplier (dA) is engaged, a decimal point will precede the mode number.

Definition of Control Flags Mode C.1 through C.8

MODE C.1: An external contact in a device such as a radio receiver or a power line carrier receiver may be used to shed a selected group of loads. To use the external contact set C.1 to "_E", set modes U.1 through U.8 to select which loads are to be shed, set C.2 to configure the contacts, and set the maximum time shed in mode UC.. To disable the contact set C.1 to " ".

The external contact is connected to analog input #2 of the indoor display (see Connection of Optional Controls).

MODE C.2: Defines the contact arrangement used on analog input #2 when C.1 is set to "_E". When C.2 is set to "_E", opening the contacts will result in shedding the selected loads (see modes U.1 through U.8). When C.2 is "__", closing the contacts will result in shedding the selected loads.

MODE C.3: An external contact may be used to control periods when the demand limit multiplier (see mode dA) is in effect. These controls are normally used to limit demand only when the power company is charging for demand. These "off peak" times may alternately be controlled by timer 1 or by a preprogrammed selection for S.R.P. rate E-32.

Installation Settings & Controls

If the power company always charges for demand (no off-peak time); set C.3 and C.4 to "_E" and leave analog input #2 open.

If the external contact is to be used, set C.3 to "_E" and set C.4 to select the contact configuration

If timer #1 is to be used to control periods of demand limiting (on/off peak), mode C.3 must be set to "__".

The contact is connected to analog input #1 (see Connection of Optional Controls).

MODE C.4: Defines the contact arrangement used on analog input #1 when enabled by setting C.3 to "_E". When C.4 is set to "__", opening the contacts will result in the limit multiplier modifying the demand limit. When C.4 is set to "_E", closing the contacts will result in the limit multiplier modifying the demand limit.

NOTE: When the limit multiplier is in effect, user Mode 4 will not display the modified peak demand. The peak demand is used to reflect the peak kilowatts that approximate billing.

MODE C.5: Priority Switch #1, when enabled, switches the priority of loads 2 and 3. During the period between Timer 1 start time and Timer 1 stop time, priorities for loads 2 and 3 are reversed. All other times, the priorities will remain as originally programmed.

MODE C.6: Priority Switch #2, when enabled, switches the priority of lads 2 and 3. During the period between Timer 2 start time and Timer 2 stop time, priorities for loads 2 and 3 are reversed. All other times, the priorities will remain as originally programmed.

MODE C.7: Daylight savings time change may be done automatically by selecting E or disabled by selection "_".

MODE C.8: Some peak scheduled may allow Saturday and Sunday off-peak. Enable the limit multiplier on weekends by selecting E or disable by selecting "_".

Definition of Mode r.1 through r.8

RESTORATION DELAY permits any load, when restored, to cause a 5-minute delay before restoration of any other load. This is provided for equipment such as H.V.A.C. with internal time delays from call to actual activation.

Definition of Mode =1 through =6

These modes are used to set and display the current date and time. Modes "=1" through "=6" display and allow adjustment of the current hour, minute, year, month, date, and day respectively. Monday is considered the 1st day of the week. Sunday is considered the 7th day of the week.

How to Set Current Time:

- 1. If not already in the setup modes, press *Mode Select*, *Increase Adjustment*, and *Decrease Adjustment* until "P1" is displayed in the *Mode* window.
- 2. If not already in mode "=1", Press Mode Select until "=1" is displayed in the Mode window.
- 3. Press Increase Adjustment or Decrease Adjustment until the proper hour is displayed in the Data window.
- 4. When your displayed selection is valid, press *Mode Select* to select the next mode.
- 5. Repeat steps 3 and 4 until the current hour, minute, year, month, and day are set.

Definition of Mode rA

This mode is used to select one of these preset rates or allow Timer 1 (and C.3) to control the limit multiplier.

- 00 Allows C.3, C.4, C.8, and Timer 1 (modes 11 to 1.8) to operate the limit multiplier.
- 01 This selection covers the APS EC-1 rate. The peak period is 24 hours a day, seven days a week.
- 02 This selection covers the APS ECT-1 rate. The peak periods are from 9:00 AM to 10:00PM, seven days a week.
- 03 This selection covers the APS ECT-1R rate. The peak periods are from 9:00 AM to 9:00 PM, Monday through Friday.
- 04 This selection covers the SRP E-32 rate. The peak period from May 15 through October 14 is 12:00 PM to 10:00 PM, and from October 15 through May 14 is 7:00 AM to 10:00 PM, Monday through Friday.
- 05 This selection covers SRP E-28 rate. The peak period from May 15 through October 14 is from Noon to 10:00 PM, Monday through Friday. The peak periods from October 15 through May 14 are from 5:00 AM to 9:00 AM and from 5:00 PM to 9:00 PM, Monday through Friday.

06 – This selection covers the VEPCO 1S rate. The peak period from June 1 through September 30 is from 11:00 AM through 10:00 PM, Monday through Friday only. The peak periods from October 1 through May 31 are from 7:00 AM through 11:00 AM and 5:00 PM through 9:00 PM, Monday through Friday only. The following Holidays are defined as off-peak: New Year's day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, and Christmas Day.

07 - This selection covers the APS ECT-2 rate. The peak periods are from 12:00 PM to 7:00 PM, Monday through Friday. The following holidays are defined as off-peak: Memorial Day, Labor Day, and Thanksgiving. The following holidays are defined as off-peak, if they occur on a weekday: New Year's, Independence Day, and Christmas. If they occur on Saturday, the previous Friday is off-peak. If they occur on Sunday, the following Monday is off-peak.

Definition of Mode 3.1 through 3.8

These modes are used to select load to be enabled during off-peak times. Load 1 is selected for control by setting mode 3.1 to "_E" and de-selected by setting mode 3.1 to "__". Loads 2 through 8 are set using modes 3.2 through 3.8 in the same manner.

Definition of Mode U.1 through U.8

These modes are used to select a group of loads for control by an external contact. Load 1 is selected for control by setting U.1 to "_E" and de-selected by setting U.1 to "_". Loads 2 through 8 are set using modes U.2 through U.8 in the same manner. See definition of Control Flags mode C.1.

Definition of UC

UTILITY SHED MAXIMUM TIME provides for selection of a maximum time limit of shed by utility control from 0.1 to 9.9 hours (see modes U.1 through U, 8 and C.1).

TEST MODE DEFINITION

The Test Mode allows the installer to test each individual load. The Test Mode is entered from the setup mode by pressing the Increase Adjustment and Decrease adjustment switches for several seconds until alarm sounds. The mode in the Test Mode is changed by pressing *Increase Adjustment* or *Decrease Adjustment* switches. Pressing *Mode Select* will select the user Mode "1". NOTE: User Mode 3 (Last Period Average) can be dropped to zero by pressing *Increase Adjustment* until the Blank Test Mode is reached. When in the Blank Test Mode, press *Increase Adjustment* and *Decrease Adjustment* switches until alarm sounds.

Test Mode	Data	Comments
"_0"	Current demand	All circuits shed
<u>"_1"</u>	Current demand	All shed but Load #1
_2 "	Current demand	All shed but Load #2
_3 "	Current demand	All shed but Load #3
_4 "	Current demand	All shed but Load #4
"_5"	Current demand	All shed but Load #5
" _ 6"	Current demand	All shed but Load #6
7 "	Current demand	All shed but Load #7
"_1" "_2" "_3" "_4" "_5" "_6" "_7" "_8" "_0."	Current demand	All shed but Load #8
" _ 0."	Scaled a/d ch 0	Undefined
<u>_1."</u>	Scaled a/d ch 1	Undefined
2. "	Scaled a/d ch 2	Undefined
_3. "	Scaled a/d ch 3	Undefined
_4 ."	Scaled a/d ch 4	Undefined
"_1." "_2." "_3." "_4." "_5." "_6." "_7." "_8." "_9."	Scaled a/d ch 5	Undefined
" _ 6."	Scaled a/d ch 6	Undefined
_7. "	Scaled a/d ch 7	Undefined
"_8."	Scaled a/d ch 8	Undefined
"_9."	Scaled a/d ch 9	Undefined
" "	Blank	Blank Test Mode – see note above

Page 13 System 1000

Hardware Installation Manual

PREFACE

Please read all instructions carefully and completely before attempting installation. Certain instructions will be followed by a WARNING or a CAUTION note. Failure to heed these notes may result in equipment failure or damage and exclusion of claims under the terms and conditions of the warranty.

These instructions are intended only as GENERAL GUIDELINES to be used in conjunction with local and national electrical and building codes. This unit should be installed and serviced by qualified persons only.

A significant amount of time, money, and frustration may be saved by performing the following steps.

- 1) Check all equipment and be sure that it works before installing the load controller.
- 2) If you do not know the control capabilities of the SYSTEM 1000 read through the System 1000 Settings and Controls before going to the job site. Further, if this is your first installation you may need to study the entire manual and attend the installation class.
- 3) Determine location and method of control for each load to be connected.
- 4) Inspect optional areas for mounting current transformers, relay enclosure, and any additional fixtures. Plan wire and conduit runs for each possibility.
- 5) Consult with the customer. Insure he is aware of his options and your professional recommendations. This discussion should include control strategies, control settings, and location of equipment.

MOUNTING RELAY ENCLOSURE & CONDUIT

- 1) Locate a suitable position adjacent to the main breaker enclosure. Plan conduit runs with regard to segregation of class 1 and class 2 circuits. Insure the lead length of the current transformers is sufficient.
- 2) Remove cover of the enclosure. Next remove chassis from the enclosure and carefully set it aside. **CAUTION:** Physical shock may damage the electronics and relays.

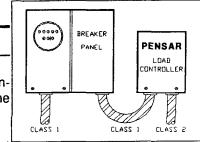


Figure 1 Mounting Relay Enclosure

- 3) Remove required knockouts. Cut any holes required for entry into the side of the class 1 compartment. All entry holes should be cut below chassis level. **CAUTION:** Remove all metal particles. **CAUTION:** Fittings for entry above the level of connection must be water tight and must allow insertion of the chassis.
- 4) Using available mounting holes, securely mount the enclosure with suitable hardware. These holes should be weatherproofed in some way (e.g. a bead of silicone sealant).
- 5) Install weatherproof conduit between the bottom of the relay enclosure and circuit breaker panel. The size of the conduit required is based on the number and gage of wiring. The following table assumes four 18 AWG for current transformers, two 14 AWG for supply and one 10 AWG for the ground conductor. Each CLASS 1 load requires two copper conductors of either 10 or 12 AWG.

CONDUIT	NUMBER (OF LOADS	
Trade Size	12 AWG	10 AWG	
0.75 Inch	5 Loads	3 Loads	
1.00 Inch	8 + Loads	6 Loads	
1.25 Inch	8 + Loads	8 + Loads	

NOTE: Table assumes THNN wire insulation.

- 6) Cut wiring to lengths needed and feed it through the conduit along with the current transformer leads. Use a color code or mark the wires for identification. **CAUTION**: Connectors are approved for copper conductors only.
- 7) Re-install chassis.

CONNECTION OF CURRENT TRANSFORMERS & RESISTORS

WARNING: RISK OF INJURY. Current transformers should never be installed over energized conductors. If the meter must be pulled to remove power, insure the procedure is approved by the utility.

WARNING: RISK OF ELECTRIC SHOCK. Energized current transformers produce high voltages when not properly terminated. Exercise caution when handling unterminated current transformer leads. For temporary termination connect the two current transformer leads together:

The current transformers supplied are toroid type for use of services of 400 amperes or less. The length of the 18 AWG leads is either 4 or 6 feet. Wires carrying the current to be measured are passed through the hole in the center of the transformer. The ratio of the current passing through the center of the transformer and that induced to the leads is 200:1

The current transformers MUST be placed to measure total current. Optimal placement is in the circuit breaker panel just after the main breaker(s). Installing current transformers outside the circuit breaker panel must be made in an acceptable enclosure. If there is any doubt concerning proper installation of the current transformers consult your local electrical inspector.

Several illustrations of how to position current transformers are provided. See Appendix D. **CAUTION:** If the transformers are not phased properly there will be an error in current measurement.

WARNING: RISK OF ELECTRIC SHOCK. Do not overload the current transformer terminating resistor. Failure of the resistor may cause high voltages and damage to the equipment.

All relay enclosures come from the factory with a terminating resistor installed on the factory wiring side of the terminals which accept the current transformer connections. Five watts is sufficient to handle full scale readings for resistance greater than 0.75 ohms. Use 10 watts for resistances less than 0.75 ohms. If increased resolution is desired, the resistance may be varied and the full scale setup modified. The full scale kilowatt setup "F1" may be calculated using the equation in the following table when using 200:1 current transformers. "V" is voltage and "R" is the terminating resistance.

- 1) First connect the current transformer to the proper terminating resistor. If more than one measurement point is required, use a terminal block to place the terminating resistor in parallel with the current transformer and the control module. The low voltage compartment is appropriate for this termination.
- 2) Next place the conductors to be measured through the hole in the current transformers. Insure the current transformers are protected from sharp protrusions and the insulation is not deformed when connections are tightened. **CAUTION**: High voltage on the current transformer inputs will cause permanent damage to the SYSTEM 1000 which may not be covered in the product warranty.

Kilowatts = V/R * 0.4 SYSTEM

48 = 120 / 1 * 0.4	1 phase nominal line voltage
46 = 115 / 1 * 0.4	1 phase low line voltage
50 = 125 / 1 * 0.4	1 phase high line voltage
24 = 120 / 2 * 0.4	1 phase modified scale using 2 ohms
96 = 120 / 0.5 * 0.4	1 phase nominal line voltage 400 ampere
21 = 208 / 4 * 0.4	3 phase wild leg (scaled with 4 ohm resistor)

CONNECTION OF HIGH VOLTAGE (CLASS 1) CIRCUITS

WARNING: RISK OF ELECTRIC SHOCK. Disconnect power to all circuits which are being serviced.

CAUTION: Insure the rating of the circuit under control does not exceed the rating of the control relay (30 amperes x 240 V.A.C. = 7.2 Kilowatts). In this instance use the control relay to drive a slave relay of proper rating.

For information on relay expansion cards, see Appendix E.

- 1) First make supply connections including the bonding ground conductor. It is recommended that a separate circuit breaker be installed in the main circuit breaker panel to supply power to the load controller. The circuit breaker must be rated not larger than 20 amperes.
- 2) Next make the load control connections at the individual circuit breakers and apply appropriate control labels. A selection of either normally-closed or normally-open contacts are available. The normally-open contacts are intended for control of pilot relays. Class 389 relays are wired at the factory for normally-closed operation. This can be changed by moving the quick disconnects from normally-closed relay contacts (1 & 3) to normally-open contacts (4 & 6). See figure 2.

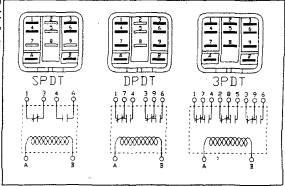


Figure 2 Class 389 Relay Contact Options

Water Heater Connection

Water heaters are generally the lowest priority items for control so make connections to the highest numbered control relays available. For each water heater, disconnect one leg from the circuit breaker and reconnect it through a normally-closed contact. Use two of the 12 to 10 AWG copper conductors previously pulled through the conduit. **CAUTION:** Insure Solar System freeze protection is not affected by control of any loads. The solar pump must be supplied from a separate circuit breaker other than the water heater breaker.

Clothes Dryer Connection

Clothes dryers are generally the highest priority item under control so make connections to relay K1. Disconnect the leg of the supply which allows the motor to run and breaks the heating element and reconnect it through a normally-closed contact. **CAUTION**: Shedding the motor side causes service calls. The only sure way to determine proper connection is by trial and error. Disconnect one leg from the circuit breaker which supplies the heating element and NOT the motor and reconnect it through a normally-closed contact. Use two of the 12 to 10 AWG copper conductors previously run through the conduit. IF THE DRYER IS NOT PRESENT, DO NOT CONNECT PLUG. In most all in one units, it is not possible to break just the heating element. One leg of the supply is the dryer motor. The other leg of the supply is the washer motor. In this case, the element must be controlled inside the dryer.

Resistive Heating Connections

This section concerns direct control of the heating elements; not class 2 control through the thermostat circuits. Insure the ampere rating of the power relays is observed (30 amperes x 240 V.A.C. = 7.2 Kilowatts). Some electric heating circuits have timing devices for either delayed activation or deactivation. When timing devices are present insure proper setup. See definition of mode P1 to P8 (priority 11) and of mode r.1 to r.8.

Baseboard or radiant heaters can usually be controlled at the breaker panel. Disconnect one leg from the circuit breaker and reconnect it through a normally-closed contact. Use lower numbered relays for the higher priority heaters (e.g. dining area, family room, kitchen and baths). Use higher numbered relays for the lower priority heaters (e.g. basement, garage, utility room).

It is recommended that large kilowatt loads (greater than 8-10 kilowatts) be split into several smaller loads. If this is not possible, insure the minimum on time for the load is as short as possible (see definition of mode E1 to E8).

Many heat pump systems use auxiliary strip heaters. Where only one or two strips are used (4-8 kilowatts), control can often be handled with the compressor through thermostat circuits. When systems use more than two heat strip circuits, the use of remotely located power relays may be required to separately control the strips in addition to thermostat control of the compressor circuit.

Spa Heater Connection

Attempt to connect only the heating coil on the spa and allow pumps to run uninterrupted. Some spas may have an accessible thermostat which can be controlled. Others may require a contactor to meet power requirements. Usually a contactor with a 120 or 240 V.A.C. coil is selected from a local electrical supply house. The coil of a contactor with a normally-closed contact is connected through the normally-open contact of one of the control relays. The coil of a normally-open contactor is connected through the normally-closed contact of the control relay.

Pool Equipment

Pool circuits usually include timers to set the time of operation and sometimes to provide delays for pool sweep pump priming. Insure timers operate properly in the shed mode. This may entail rewiring the timer to operate on 120 V.A.C. The SYSTEM 1000 provides some control for operation duration (see definition of setup modes E1 to E8) and delay to activation (see definition of setup modes r.1 to r.8). Setup the pool equipment to operate during times of lowest demand.

CONNECTION OF LOW VOLTAGE (CLASS 2) CIRCUITS

Low Voltage wiring is to enter through the bottom right knockout of the relay enclosure. All wiring should be 18 AWG or larger and have proper type of insulation for the application. Thermostat wire is usually suitable. If wiring is exposed to sunlight it should be placed in conduit or have a ultraviolet resistant jacket. A suitable type of strain relief or conduit fitting should be used.

Two relays are mounted on the circuit board in the system 1000 control module for low voltage control circuits. Normally-open and normally-closed contacts for each relay, and 12 V.D.C. supply connections are provided to facilitate both direct and slave control.

If power relays are also needed for class 2 control, insure the insulation of any wires run meet requirements for class 1. On the other hand, more class 1 circuits may be constructed using the on board relays to drive slave relays. If the 12 V.D.C. power supply is to drive 12 V.D.C. slave coils, insure transient suppression is provided (see figure 3).

CAUTION: Failure to provide transient protection will result in erratic controller operation. Your local Pensar dealer supplies pilot relays incorporating the required transient suppression diodes.

SYSTEM NOTE: RELAY K3 CAN BE 1000/1100 RELAY CONTACT ARRANGEMENTS WIRED THE SAME AS KE CIRCUIT CARD -----+12VDC ----- GRDUND 20A (DPDT TRANSIENT SMALL (3) SUPPRESSOR RELAY JUMPER - - -**(4)** IIA (3PDT DICIDE кз RELAY RELAY COIL VOLTAGE 12VDC ---

Figure 3 Transient Suppression

Heating Ventilating and Air Conditioning Systems

Heating Ventilating and Air Conditioning systems can be controlled by interrupting certain thermostat circuits. **CAUTION:** It is recommended that slave relays be used when H.V.A.C. systems are located more than 35 feet from the controller or when more than one circuit must be interrupted. Refer to the examples provided in figures 6, 7, and 9. Your local Pensar dealer supplies these 24 V.A.C. and 12 V.D.C. pilot relays.

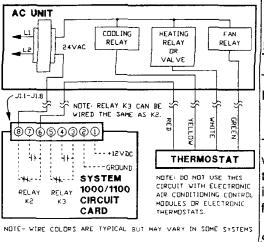
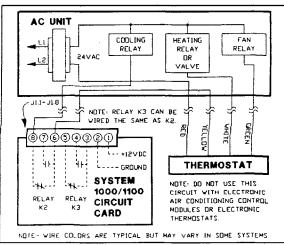


Figure 4


Interrupting 24 V.A.C. to Shed H.V.A.C.

Interrupting 24 V.A.C. to Shed Entire H.V.A.C.

This circuit provides a simple yet effective method of controlling both the heating and cooling functions without additional components.

This circuit should be used with non-electronic thermostats only. Breaking 24 V.A.C. works best for most systems.

See Harvest Aire section for fan control

Interrupting Only the Compressor to Shed H.V.A.C.

This method can be used for dual energy or heat pump systems.

Some heat pump systems work best if just the compressor relay is interrupted due to operation of their reversing valves. If the system has auxiliary heat strips they must be separately controlled.

See Connection of Class 1 - Resistive Heating Connections. Note: The fan will operate continuously when cooling is called and if heating is called in heat pump systems. See use of 3PDT pilot on H.V.A.C.

Interrupting 24 V.A.C. to Shed H.V.A.C. With Pilot Relay

This figure illustrates the use of a remote relay for air conditioning systems located more then 35 feet from the load controller.

Figure 5 Interrupting Compressor to Shed H.V.A.C.

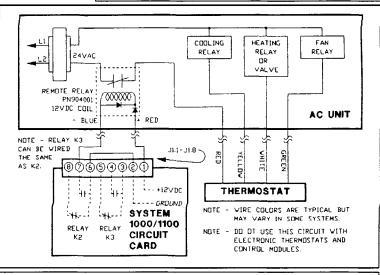


Figure 6
Interrupting 24 V.A.C. with Pilot

Interrupting Fan, Heat, & Cool to Shed H.V.A.C. With 3PDT

This method is used on H.V.A.C. systems that make a loud noise when the load controller "sheds" them. This circuit eliminates control of the reversing valve, thereby eliminating the problem. The 3PDT 24 V.A.C. or 12 V.D.C. relay is used to control the fan, heating, and cooling contactors.

Harvest Aire Thermostat Optimizer

Improving the heating and cooling system operation on systems without a time-delay fan is possible with the HARVEST AIRE thermostat optimizer. Each time the H.V.A.C. system is cycled off by either thermostat or load management control, the fan will be run to harvest the warm or cool air in the duct work or coils.

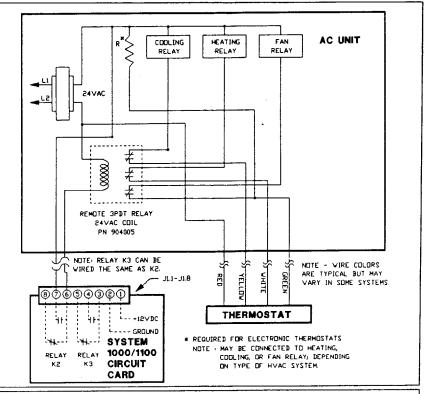
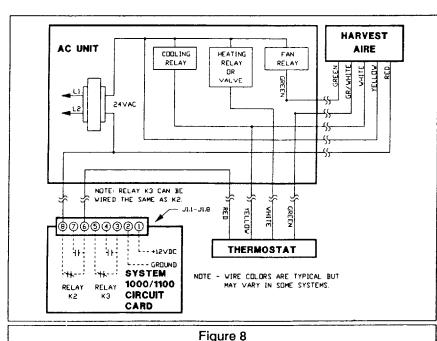
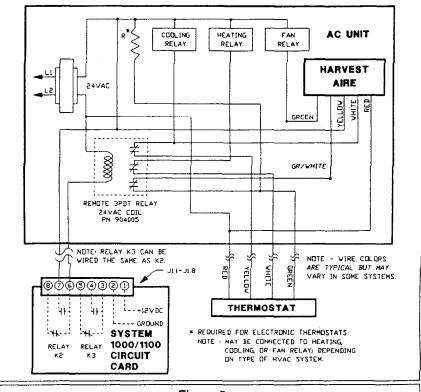



Figure 7
Using 3PDT Pilot to Shed H.V.A.C.

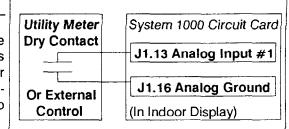
Harvest Aire


Part Number	Description	Enclosure
3142A	1.5 minutes fan off delay	wall mount
3142A-1	1.5 minutes fan off delay	encapsulated
3142	3.0 minutes fan off delay	wall mount
3142-1	3.0 minutes fan off delay	encapsulated

Control H.V.A.C. with Harvest Aire

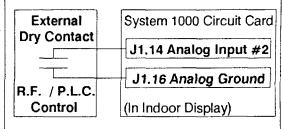
This circuit provides a simple yet effective method of controlling both heating and cooling functions without additional components. The HARVEST AIRE fan optimizer is shown wired for high impedance operation on the cooling and heating cycles.

This circuit should be used with nonelectronic thermostats only. Breaking the 24 V.A.C. works best for systems with electric heat strips and with most heat pumps. This circuit provides independent control of the heat, cool and fan relays. The HARVEST AIRE is connected to operate in cooling and heating modes.



CONNECTION OF OPTIONAL CONTROLS

Figure 9
Control H.V.A.C. with Harvest Aire


Utility Shed

Control of periods when a selected group of circuits may be shed by an external contact is possible (see mode C.1). This contact may be set to shed selected circuits when either closed or when open (see mode C.2). The maximum time circuits may remain shed is may be set from .1 to 9.9 hours to protect from external equipment failure (see mode UC).

Utility Peak

Control of periods when demand limiting is not required may be provided through the use of demand limit multiplier (see mode dA) and of either utility peak control flag (see mode C.3 & C.4) or timer #1.

FINAL INSPECTION AND DOCUMENTATION

- 1) Insure the unit sheds and restores all loads. The H.V.A.C. unit must be tested for proper operation & control in both heat and cool modes.
- 2) Insure user mode 2 displays the correct kilowatt draw.
- 3) Set the demand limit (mode 1).

- 5) Insure all overrides are clear (mode 5).
- 6) Set the automatic adjustment maximum (mode 6) to "0.0" for manual or to a reasonable maximum seasonal adjustment point. Set the automatic adjustment (mode 6.) to a reasonable minimum adjustment point.
- 7) Set the alarm (mode 7) to "4" or "5" or as the customer desires.
- 8) Review the setup modes to insure proper setup, double check modes = 1 through = 6 for the correct current time.
- 9) After the system is fully operational, replace and secure the front cover. Insure the area is clean of installation debris
- 10) Fill in the necessary information as indicated on the various labels. Use a permanent type ink. Supplementary labels are proved for controlled devices. Place these in a conspicuous locations in the circuit breaker panel and on the controlled devices.
- 11) Place the required label with the installing company's name and telephone is number on the outside of the box.
- 12) Last but most important, educate the customer on control strategies and operation of their new unit. Leave the customer with this manual and a goal to save.

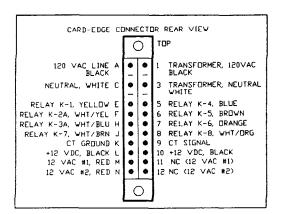
SERVICE

The first step in any trouble-shooting procedure is to clearly define the problem including the possibility of operator error or misconception. This is usually done over the phone. Have the user indicate the data of each of the modes and insure no override is in effect. Analysis of this data usually leads directly to the problem. Directed override may also prove beneficial to problem solving.

Check power supplies and fuses. The SYSTEM 1000 module is protected with a 2.5 ampere fast-blow fuse type AGC or equivalent. The intention of the fuse is to protect the card and transformer but not necessarily external devices connected to it.

Insure the relays are in operational order. De-energize the controller and insure all equipment is operational through the normally closed contacts. Energize the controller and set the demand limit to 0.1. Insure all loads are disabled. Insure the proper connection of the coil and contacts.

Keep connections tight. It is good practice to insure all terminal and wire nut connections are secure.


To isolate equipment, when override is not possible, de-energize load controller (turn off all the other controlled equipment). This will allow the device to work continuously.

If the chassis must be removed for service, properly terminate all wires. WARNING: Short current transformer wires together to prevent high voltages. Remove the bottom mounting screw and loosen the keyed screws. To have the chassis serviced, contact your local PENSAR dealer. If there is not a dealer in your area contact

ElectroSem, LLC 2600 South Hardy Drive Tempe, AZ 85282-1916 Telephone: 602-955-6566

Appendix A Connector Terminal Assignments

CARD-EDGE CONNECTOR TERMINALS

SYSTEM 1000 TERMINALS

J1.1														+ 12 VDC
J1.2				,										. digital ground
J1.3														K3 Common
J1.4												K	(3	Normally Open
J1.5											.1	<3	١	Normally Closed
J1.6														K2 Common
J1.7												K	2	Normally Open
J1.8														Normally Closed
J1.9										Se	eri	al	C	communications
J1.10										C.	Τ.	ir	ıp	out #1 (phase 1)
J1.11										C.	Τ.	ir	ıρ	out #2 (phase 2)
J1.12										C.	Τ.	in	p	out #3 (phase 3)
J1.13			а	na	alc	g	ir	ηp	ul	ŧ #	# 1	(ι	ıt	ility on/off peak)
J1.14						. ذ	an	al	O,	g i	inį	pu	t	#2 (utility shed)
J1.15			а	n	ald	og	ji	np	u	t 7	#3	3 (1	fu	ture expansion)
J1.16						•								analog ground

Appendix B Setup Parameters In Step-by-step Order

Remember to change modes, press Mode Select. To change data, use Increase Adjustment or Decrease Adjustment.

	to change modes, press mode Select. To change data, use increase Adjustment of Becr
P1	Enter the Priority for load #1 (1-7).
L1	Enter the Kilowatt draw of the Load #1 (round up to nearest kilowatt).
E1	Enter the Enabled time of load #1 (minimum on time in minutes).
d1	Enter the disable time of load #1 (minimum off time in minutes).
P2	Enter the Priority for load #2 (1-11). For no connection set priority 15.
L2	Enter the Kilowatt draw of the Load #2 (round up to nearest kilowatt).
E2	Enter the Enabled time of load #2 (minimum on time in minutes).
d2	Enter the disable time of load #2 (minimum off time in minutes).
P3	Enter the Priority for load #3 (1-11). For no connection set priority 15.
L3	Enter the Kilowatt draw of the Load #3 (round up to nearest kilowatt).
E3	Enter the Enabled time of load #3 (minimum on time in minutes).
d3	Enter the disable time of load #3 (minimum off time in minutes).
P4	Enter the Priority for load #4 (1-11). For no connection set priority 15.
L4	Enter the Kilowatt draw of the Load #4 (round up to nearest kilowatt).
E4	Enter the Enabled time of load #4 (minimum on time in minutes).
d4	Enter the disable time of load #4 (minimum off time in minutes).
P5	Enter the Priority for load #5 (1-11). For no connection set priority 15.
L5	Enter the Kilowatt draw of the Load #5 (round up to nearest kilowatt).
E5	Enter the Enabled time of load #5 (minimum on time in minutes).
d5	Enter the disable time of load #5 (minimum off time in minutes).
P6	Enter the disable time of load #5 (minimum of time in minutes). Enter the Priority for load #6 (1-11). For no connection set priority 15.
L6	Enter the Kilowatt draw of the Load #6 (round up to nearest kilowatt).
E6	Enter the Enabled time of load #6 (minimum on time in minutes).
d6	Enter the chapled time of load #6 (minimum off time in minutes).
06 P7	Enter the disable time of load #6 (minimum on time in minutes). Enter the Priority for load #7 (1-11). For no connection set priority 15.
L7	Enter the Kilowatt draw of the Load #7 (round up to nearest kilowatt).
E7	Enter the Enabled time of load #7 (minimum on time in minutes).
d7	Enter the disable time of load #7 (minimum off time in minutes).
P8	Enter the Priority for load #8 (1-11) For no connection set priority 15.
L8	Enter the Kilowatt draw of the Load #8 (round up to nearest kilowatt).
E8	Enter the Enabled time of load #8 (minimum on time in minutes).
d8	Enter the disable time of load #8 (minimum off time in minutes).
F1	Full scale demand phase 1
F2	Full scale demand phase 2
F3	Full scale demand phase 3
11	Timer #1 start hour (on).
12	Timer #1 start minute.
13	Timer #1 stop hour (off).
14	Timer #1 stop minute.
1.1	Enable on timer #1 load #1
1.2	Enable on timer #1 load #2
1.3	Enable on timer #1 load #3
1.4	Enable on timer #1 load #4
1.5	Enable on timer #1 load #5
1.6	Enable on timer #1 load #6
1.7	Enable on timer #1 load #7
1.8	Enable on timer #1 load #8
21	Timer #2 on hour.
22	Timer #2 off hour.
23	Timer #2 on hour.
24	Timer #2 off hour

	Appendix B Goldp Faranteers in Otep by Step Greet
2.1	Enable on timer #2 load #1
2.2	Enable on timer #2 load #2
2.3	Enable on timer #2 load #3
2.4	Enable on timer #2 load #4
2.5	Enable on timer #2 load #5
2.6	Enable on timer #2 load #6
2.7	Enable on timer #2 load #7
2.8	Enable on timer #2 load #8
PL	Demand period selection (15 minute, 30 minute, and 60 minute).
dA	Limit multiplier, Multiplies the demand limit by this number between timer 1 start and stop.
	To inhibit select 1.0.
C.1	Utility shed enabled if "E". Enabled allows the utility company to tell the load controller to shed
	loads.
C.2	Utility shed on open contact (analog input #2) if "E" Utility shed on closed contract.
C.3	Utility meter contact for on / off peak control enable (analog input #2).
C.4	Utility on peak when open contact (analog input #1) if "E" Utility on peak when closed contact.
C.5	
C.6	
C.7	Enable automatic change of hour for daylight savings time.
C.8	Enable weekends off peak.
r.1	Load 1 restoration delay. Select with "E" to cause 5 minutes delay
r.2	Load 2 restoration delay. before any load may be restored after
r.3	Load 3 restoration delay. selected load is restored.
r.4	Load 4 restoration delay.
r.5	Load 5 restoration delay.
r.6	Load 6 restoration delay.
r.7	Load 7 restoration delay.
r.8	Load 8 restoration delay.
= 1	current hour
= 2	current minute
= 3	current year
= 4	current month
= 5	current date (day of month)
=6	current day of the week $(1 = monday, 7 = sunday)$
rA	Preselected rate
3.1	Load 1 shed on peak times
3.2	Load 2 shed on peak times
3.3	Load 3 shed on peak times
3.4	Load 4 shed on peak times
3.5	Load 5 shed on peak times
3.6	Load 6 shed on peak times
3.7	Load 7 shed on peak times
3.8	Load 8 shed on peak times
U.1	Load 1 shed by Utility signal (accessible only if $C.1 = E$)
U.2	Load 2 shed by Utility signal
U.3	Load 3 shed by Utility signal
U.4	Load 4 shed by Utility signal
U.5	Load 5 shed by Utility signal
U.6	Load 6 shed by Utility signal
U.7	Load 7 shed by Utility signal
U.8	Load 8 shed by Utility signal
U C	Maximum hours the Utility may shed the loads prior to automatic load restoration to override
	failed utility controls.
	7

Appendix C Setup Examples

Setup Mode		Example 2 Set / Comment	Example 3 Set / Comment	Example 4 Set / Comment
P1	1	1	2	1
L1	5 Load #1	5 Load #1	5 Load #1	5 Load #1
E1	3 (dryer)	3 (dryer)	3 (dryer)	3 (dryer)
d1	3	3	3	3
P2	2	2	3	2
L2	6 Load #2	6 Load #2	6 Load #2	6 Load #2
E2	6 (HVAC)	6 (HVAC)	6 (HVAC)	6 (ac #1
d2	6	7	6	6
P3	15	2	3	3
L3	X Load #3	7 Load #3	7 Load #3	6 Load #3
E3	X (no Load)	6 (HVAC)	6 (HVAC)	6 (ac #2)
d3	X	7	8	8
P4	8	7	8	5
L4	5 Load #4	5 Load #4	5 Load #4	6 Load #4
E4	3 (w/h)	3 (w/h)	2 (w/h #1)	2 (heat #1)
d4	3	3	2	2
P5	15 V Lood #5	8	8 5 Load #5	6 5 Load #5
L5	X Load #5	12 Load #5		2 (heat #2)
E5 d5	X (no Load)	1 Spa 3 Heater	2 (w/h #2)	` ,
P6	15	15	1	<u>2</u>
L6	X Load #6	X Load #6	2 Load #6	5 Load #6
E6	X (no Load)	X (no Load)	15 (pool Pump)	2 (heat #3)
d6	X	X	5	3
P7	15	15	9	6
Ĺ7	X Load #7	X Load #7	2 Load #7	5 Load #7
E7	X (no Load)	X (no Load)	10 (sweep)	2 (heat #4)
d7	x`´	X`´	5	3
P8	15	15	15	8
L8	X Load #8	X Load #8	X Load #8	5 Load #8
E8	X (no Load)	X (no Load)	X (no Load)	2 (w/h #1)
d8	X	X	X	2
F1	48 Full Scale	48 Full Scale	48 Full Scale	48 Full Scale
F2	00 Phase 2 Fs	00 Phase 2 Fs	00 Phase 2 Fs	00 Phase 2 Fs
F3	00 Phase 3 Fs	00 Phase 3 Fs	00 Phase 3 Fs	00 Phase 3 Fs
11	23 Start Time	23 Start Time	10 Start Time 50 10:50 AM	19 Start Time 15 7:15 PM
12	59 not used	59 not used	13 Stop Time	07 Stop Time
13	23 Stop Time 59 not used	23 Stop Time 59 not used	45 01:45 PM	30 7:30 AM
1.1	no control	no control	no control	no control
1.2	no control	no control	no control	no control
1.3	no control	no control	no control	no control
1.4	no control	no control	no control	no control
1.5	no control	no control	no control	no control
1.6	no control	no control	E control 6	E control 6
1.7	no control	no control	E control 7	E control 7
1.8	no control	no control	_no control	no control
21	6 Start Hour	15 Start Hour	18 Start Hour	6 Start Hour
22	9 Stop Hour	16 Stop Hour	23 Stop Hour	9 Stop Hour
23	16 Start Hour	20 Start Hour	18 Start Hour	16 Start Hour
24	23 Stop Hour	23 Stop Hour	23 Stop Hour	22 Stop Hour
2.1	_ no control	_no control	_ no control	_ no control
2.2	_ no control	_ no control	_ no control	_ no control
2.3	no control	no control	_ no control	_ no control
2.4	E control 4	E control 4	_ no control	_ no control

See SETUP MODE DEFINITIONS for detailed information.

Example 1: Illustrates connection of a clothes dryer, HVAC, and water heater. Full scale is set at 48 KW (1 ohm terminator). The demand period is one hour. The rate select is set to 2 (ECT-1). The limit multiplier will be engaged at 10:10 P.M. and disengaged at 8:50 A.M. (ECT-1). The demand limit is four times the limit set in user mode 1 during off peak hours (dA). Timers 2 and 3 are set to shed load 4 between 9:00 A.M. and 4:00 P.M..

Example 2: Illustrates connection of a clothes dryer, 2 HVAC, a spa, and a water heater. Full scale is at 48 kilowatts. The demand period is one hour. Rate select is set to 3 (ECT-1R) whichs limit the demand between 8:45 A.M. until 9:15 P.M., Monday thru Friday only. The demand limit is four times the limit set in user mode 1 during off peak hours (dA). Timers 2 and 3 are set to shed load 4 between 8:50 A.M. and 3:00 P.M. and between 4:00 P.M. and 8:00 P.M. Monday thru Friday only. Load 5 is shed during the on peak period by timer 3. When load 3 is restored, no other load may be restored for 5 minutes (mode r.3).

Setup	Example 1	Example 2	Example 3	Example 4
Mode	Set / Comment	Set / Comment	Set / Comment	Set / Comment
2.5	no control	no control	no control	no control
2.6	_ no control	no control	E control 6	no control
2.7	no control	_ no control	E control 7	_ no control
2.8	no control	no control	no control	no control
PL	60 Period Len	60 Period Len	60 Period Len	60 Period Len
dA	4.0 Multiply	4.0 Multiply	1.0 Multiply	4.0 Multiply
C1	no shed	_ no shed	_ no shed	_ no shed
C2	_ don't care	_don't care	_ don't care	don't care
C3	E contact peak	E contact peak	E contact peak	E contact peak
C4	E open = peak	E open = peak	E open = peak	
C5	_ don't care	_ don't care	_ don't care	_ don't care
C6	_ don't care	_ don't care	_ don't care	don't care
C7	_ no daylight	_ no daylight	_ no daylight	E daylight save
C8	_ no weekends	_ no weekends	_ no weekends	E weekends off F
r.1	no r delay	no r delay	no r delay	_ no r delay
r.2	no r delay	no r delay	no r delay	no r delay
r.3	_ no r delay	E no r delay	_ no r delay	no r delay
r.4	no r delay	_ no r delay	no r delay	no r delay
r.5	no r delay	no r delay	no r delay	no r delay
r.6	no r delay	_ no r delay	_ no r delay	no r delay
1.7	no r delay	_ no r delay	_ no r delay	no r delay
r.8	no r delay	_ no r delay	_ no r delay	_ no r delay
=1	16 hour	16 hour	16 hour	16 hour
=2	54 minute	54 minute	54 minute	54 minute
=3	89 year	89 year	89 year	89 year
=4	10 month	10 month	10 month	10 month
=5	02 date	02 date	02 date	02 date
=6	01 day	01 day	01 day	01 day
rA	2 ECT-1	3 ECT-1R	1 EC-1	0 no select
3.1	_ no control	_ no control	_ no control	no control
3.2	_ no control	_ no control	_ na control	no control
3.3	_ no control	no control	_ no control	no control
3.4	E control 4	E control 4	_ no control	no control
3.5	no control	E control 5	_ no control	no control
3.6	no control	_ no control	_ no control	no control
3.7	no control	no control	_ no control	_ no control
3.8	_ no control	_ no control	_ no control	no control
U.1	not displayed	not displayed	not displayed	not displayed
U.2	no utility	no utility	no utility	no utility
U.3	no utility	no utility	no utility	no utility
U.4	no utility	no utility	no utility	no utility
U.5	no utility	no utility	no utility	no utility
U.6	no utility	no utility	no utility	no utility
U.7	no utility	no utility	no utility	no utility
U.8	no utility	no utility	no utility	no utility
UC		0.0 max. time	0.0 max. time	0.0 max. time
	J.J HIGH HITE	0,0 11.0011 111110		

See SETUP MODE DEFINITIONS for detailed information.

Example 3: Illustrates connention of a clothes dryer, 2 HVACs, 2 water heaters, and a pool pump & sweep. Full scale of 48 kilowatts. The demand period is one hour. The rate select is set 1 which always limit demand (EC-1). Notice the use of priority 9 on the pool sweep. Timers 1 and 2 are set restore loads 6 and 7 (pool equipment) between 10:50 A.M. and 1:45 P.M. also restoring them between 6:00 P.M. and 11:00 P.M..

Example 4: Illustrates connection of a cloths dryer, 2 air conditioners, 4 heat strips, and a water heater. Full scale of 48 kilowatts. The demand period is 15 minutes. The rate select is set to 0 leaving the limit multiplier control to either timer 1 or utility meter contact (C.3 and C.4). The unit is set to limit demand when the utility meter contact is closed. Otherwise the demand limit is 4 times (dA) the limit set in user mode 1. Timer 1 is set to shed loads 6 and 7 (heaters) between 7:30 A.M. and 7:15 P.M.. Timer 2 is set to shed load 8 (water heater) between 9:00 A.M. and 4:00 P.M. and also between 10:00 P.M. and 6:00 A.M..

Appendix D Typical Current Transformer Installations

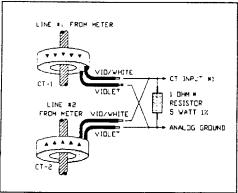


Figure 10 Single Phase 200 Ampere C.T. Placement

Single Phase 200 Ampere

This is the most commonly used C.T. hook-up.

NOTE: C.T.s are inverted (reversed).

MODE DATA

F1 48

F2 00

F3 00

Single Phase 400 ampere

If the house has a 400 ampere service (four hot lines) and the lines can not be fit two to a C.T. use this configuration.

NOTE: C.T.s are inverted on each set of lines.

MODE DATA

F1 48

F2 48

F3 00



Figure 12 Single Phase 400 Ampere C.T. Placement (4 C.T.s)

Single Phase 400 Ampere

If the house has a 400 ampere service (four hot lines) and the lines can be fit two to a C.T. use this configuration.

NOTE: match the phase going through C.T.s.

MODE DATA

F1 48

F2 48

F3 00

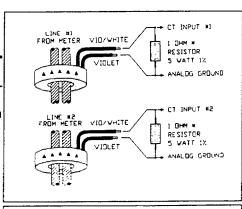


Figure 11 Single Phase 400 Ampere C.T. Placement (2 C.T.s)

Single Phase + wild leg (208)

When the house has a wild leg (208 V.A.C.) then a third C.T. is needed to monitor the total house usage. The C.T.s are installed as shown.

NOTE: A 4 ohm resistor was used on the wild leg in place of the normal 1 ohm.

MODE DATA

F1 48

F2 21

F3 00

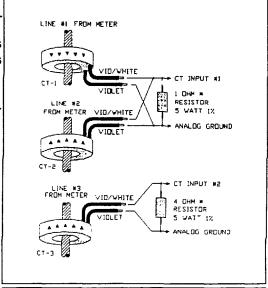


Figure 13 Single Phase + Wild Leg (208 VAC) C.T. Placement

Three Phase (true)

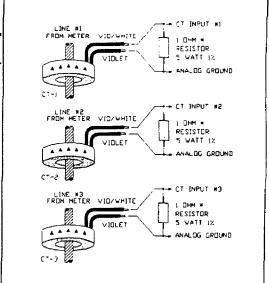
If the house has true Three Phase, and a system 1000 is being used follow this diagram.

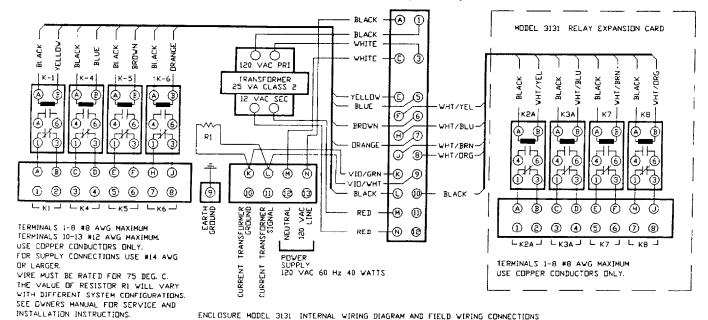
MODE DATA

F1 48

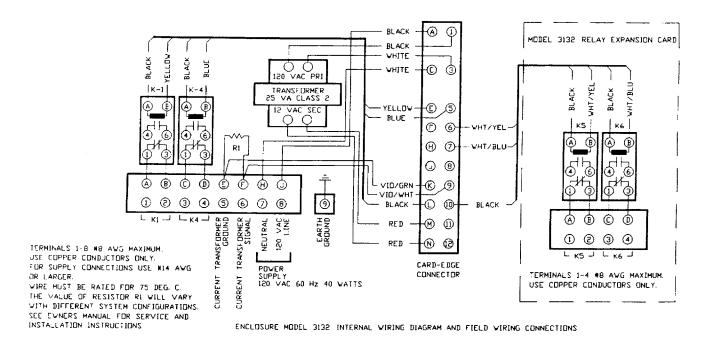
F2 48

F3 48




Figure 14 Three Phase C.T. Placement

Appendix E Relay Expansion Cards


CAUTION: MORE THAN ONE DISCONNECT MAY BE REQUIRED TO DE-ENERGIZE THIS EQUIPMENT BEFORE SER-VICING. Relays come from factory wired in normally-closed configuration. To change to normally-open, disconnect wires connected to contacts 1 and 3 (marked on relay) and reconnect to contacts 4 and 6.

RELAY CONTACT SPECIFICATIONS:DPST-DB (standard.); SPST-DM (optional) 30 AMPERE RESISTIVE 120/240 V.A.C. 3/4 HP 120 V.A.C., 1-1/2 HP 240 V.A.C.

FOUR CIRCUIT EXPANSION CARD PN-800025: The relay expansion card provides four additional circuits for control. The new circuits are designated K2A, K3A, K7, and K8. Circuits K7 and K8 are controlled independent of all other circuits. Circuits K2A and K3A are switched at the same time as the standard pilot relays K2 and K3.

TWO CIRCUIT EXPANSION CARD PN-800026: The relay expansion card provides two additional circuits for control. The new circuits are designated K5 and K6. Circuits K5 and K6 are controlled independent of all other circuits.

Appendix F New User Modes

List of User Modes with new modes highlighted

MODE	DATA		
1	Demand Limit		
2	Current Demand		
3	Last Period Average		
4	Peak Period Average		
5	Circuit Override		
5. (5 dot)	Time of Override		
6	Auto Adjust On/Off and Maximum Limit		
6. (6 dot)	Auto Adjust Minimum Limit		
H6. (H6 dot)	Auto Adjust Increment setting		
L6. (L6 dot)	Auto Adjust Decrement setting		
7	Alarm Control		

NOTE: If User Mode 6 is set to "0.0" then the Menu setting for the Auto Adjust Increment and Auto Adjust Decrement settings (H6. and L6.) are not displayed.

Mode H6. (H6 dot) - Auto Adjust Increment Setting

If you are in demand control, i.e. your demand increases, this setting will control the time before initial increment of the Demand and how often it will increase until it reaches the maximum limit set in Mode 6, unless Mode 6 is set to "0.0"

How to Change Auto Adjust Increment Setting

Auto Adjust Increment			
Setting No	Time in Hours before initial increment	Time in minutes until next increment	
1	3.0	42	
2	3.0	30	
3	3.0	18	
4	2.5	42	
5	2.5	30	
6	2.5	18	
7	2.0	42	
8	2.0	30	
9	2.0	18	

- 1. If not already in Mode H6. (H6 dot), press MODE SELECT until "H6." is displayed in the MODE window.
- 2. If locked, unlock data by pressing both INCREASE ADJUSTMENT and DECREASE ADJUSTMENT until a beep is sounded.
- 3. Raise or lower setting in *DATA* window using either *INCREASE ADJUSTMENT* or *DECREASE ADJUSTMENT* accordingly to the table on the left.
- Your displayed selection is valid. You may press MODE SELECT to change display mode as desired.

Mode L6. (L6 dot) - Auto Adjust Decrement Setting

If you are not in demand control, i.e. your demand decrease, this mode will set the decrement of the Demand Limit Change for weekdays and weekends.

Auto Adjust Decrement			
Setting No	Demand limit change		
	Weekday	Weekend (per Day)	
1	0.1 / 0.5	0.0	
2	0.1 / 0.5	0.1 / 0.5	
3	0.1 / 0.5	0.2 / 1.0	
4	0.2 / 1.0	0.0	
5	0.2 / 1.0	0.1 / 0.5	
6	0.2 / 1.0	0.2 / 1.0	

How to Change Auto Adjust Decrement Setting

- 1. If not already in Mode L6. (L6 dot), press *MODE SELECT* until "L6." is displayed in the *MODE* window.
- 2. If locked, unlock data by pressing both *INCREASE ADJUSTMENT* and *DECREASE ADJUSTMENT* until a beep is sounded.
- 3. Raise or lower setting in *DATA wi*ndow using either *INCREASE ADJUSTMENT* or *DECREASE ADJUSTMENT* accordingly to the table on the left.
- 4. Your displayed selection is valid. You may press *MODE* SELECT to change display mode as desired.

Note: 0.1or 0.2 for demand below 10 kilowatt

0.5 or 1.0 for demand equal or above 10 kilowatt.

Appendix G Error Codes

Error Codes list

Err 3: This error indicates that a value stored in the EEPROM or programmed chip, is out of range.

See the Error Recovery Procedure below

Err 4: This error indicates that the battery for the real-time clock (RTC) is low.

The battery needs to be replaced as soon as possible.

- If your unit has an external battery, and you are comfortable with minor soldering, you can replace it yourself. Pay particularly attention to the polarity of the battery, and make sure the unit is off.
- If your unit has a modular RTC, you need to purchase a new modular battery. It is available directly through your Pensar distributor or visit our website for a listing.

In either case, see the Error Recovery Procedure below after the battery is replaced.

Err 7: This error indicates that a value stored in the RTC is out of range.

See the Error Recovery Procedure below.

Error Recovery Procedure

Upon receiving an error, turn the unit off and wait fifteen (15) seconds before turning the unit back on.

If Err 7 is received again, wait sixty (60) seconds, turn the unit off, wait another fifteen (15) seconds and turn the unit back on. You may need to repeat this procedure in order to clear the error.

Depending upon the error received, some or all of the settings will need to be reset. It is recommended that all settings be checked for your preferences.

If the error is received again, the unit will need to be serviced.

Contact your Pensar distributor or visit our website for a listing. (www.electrosem.com)

Technical Specifications

TYPICAL RELAY ENCLOSURES

Model 3131

Dimensions:

10"w x 12"h x 4.0"d. (Optional sizes available)

Enclosure type:

NEMA 3R Rain tight, screw cover

Operating Temperature: -40F to +170F. Power Requirements:

120 V.A.C., 60 Hz.

40 watts maximum 4 watts standby

Relays:

Electromechanical type.

Two 3 ampere pilot-duty SPDT.

Up to eight 30 ampere 1 1/2 HP SPDT (DPDT optional)

Model 3132

Dimensions:

8"w x 10"h x 4.0"d.

Enclosure type:

NEMA 3R Rain tight, screw cover

Operating Temperature: -40F to +170F. Power Requirements:

117 V.A.C., 60 Hz.

40 watts maximum 4 watts standby

Relays:

Electromechanical type.

Two 3 ampere pilot-duty SPDT.

Up to four 30 ampere 1 1/2 HP SPDT (DPDT optional)

CURRENT TRANSFORMERS

Two ring type with 48" 600 volt leads Standard type: 200: 1 ampere Class 2 Dimensions: 2.4" O.D. x 1.1" I.D. x 0.8" width 400 and 600 ampere ratings also available

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

FCC NOTICE

WARNING: This equipment uses and generates and can radiate radio frequency energy and if not installed properly and used in strict accordance with the manufacturer's instructions, may cause interference to radio or television reception. It has been tested and found to comply with the limits for a class B computing device pursuant to subpart J, part 15, of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a residential environment. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment on and off, the user is encouraged to try to correct the interference by one or more of the following:

- · Reorient the receiving antenna.
- Relocate the computer with respect to the receiver.
- Plug the computer and receiver into different branch circuits.
- If required, the user should consult the dealer or an experienced radio/TV technician for additional suggestions. The user may also find the publication "HOW TO IDENTIFY & RESOLVE RADIO/TV INTERFERENCE PROBLEMS". This book is published by the FCC and is available from the U.S. Government Printing Office, Washington DC 20402, Stock #004-000-00345-4.

If shield cables are required with this unit, then the operators manual will indicate that sheilded cables are required to insure compliance.

Page 34 Technical Specifications System 1000